
This article was downloaded by: [National Institute of Tech - Surathkal]
On: 18 December 2012, At: 08:32
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Electronics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tetn20

Implementation of comprehensive
address generator for digital signal
processor
Ramesh M. Kini a & Sumam S. David a
a Department of ECE, National Institute of Technology Karnataka,
Surathkal, Karnataka, India
Version of record first published: 26 Sep 2012.

To cite this article: Ramesh M. Kini & Sumam S. David (2012): Implementation of comprehensive
address generator for digital signal processor, International Journal of Electronics,
DOI:10.1080/00207217.2012.713009

To link to this article: http://dx.doi.org/10.1080/00207217.2012.713009

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tetn20
http://dx.doi.org/10.1080/00207217.2012.713009
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Electronics
2012, 1–18, iFirst

Implementation of comprehensive address generator for

digital signal processor

Ramesh M. Kini* and Sumam S. David

Department of ECE, National Institute of Technology Karnataka, Surathkal,
Karnataka, India

(Received 7 June 2010; final version received 1 May 2012)

The performance of signal-processing algorithms implemented in hardware
depends on the efficiency of datapath, memory speed and address computation.
Pattern of data access in signal-processing applications is complex and it is
desirable to execute the innermost loop of a kernel in a single-clock cycle.
This necessitates the generation of typically three addresses per clock: two
addresses for data sample/coefficient and one for the storage of processed data.
Most of the Reconfigurable Processors, designed for multimedia, focus on
mapping the multimedia applications written in a high-level language directly on to
the reconfigurable fabric, implying the use of same datapath resources for kernel
processing and address generation. This results in inconsistent and non-optimal use
of finite datapath resources. Presence of a set of dedicated, efficient Address
Generator Units (AGUs) helps in better utilisation of the datapath elements by
using them only for kernel operations; and will certainly enhance the performance.
This article focuses on the design and application-specific integrated circuit
implementation of address generators for complex addressing modes required by
multimedia signal-processing kernels. A novel algorithm and hardware for AGU is
developed for accessing data and coefficients in a bit-reversed order for fast Fourier
transform kernel spanning over log 2N stages, AGUs for zig-zag-ordered data
access for entropy coding after Discrete Cosine Transform (DCT), convolution
kernels with stored/streaming data, accessing data for motion estimation using the
block-matching technique and other conventional addressing modes. When
mapped to hardware, they scale linearly in gate complexity with increase in the size.

Keywords: address generation; bit-reversed address; convolution; digital signal-
processing kernel; dynamically reconfigurable datapath; fast Fourier transform;
finite impulse response filters; infinite impulse response filters; motion estimation;
zig-zag address generation

1. Introduction

Offline data processing or stream data processing of a large number of data points, as in
the case of multimedia applications, requires data to be accessed from memory at high
rates. The sequence of this data access is non-linear and complex, varying with the type of
signal-processing kernel that is being executed. It is not possible to generate these
sequences of addresses with simple Address Generator Units (AGUs) at 3 addresses
per clock. Use of kernel execution datapath for address computation leads to
ineffective utilisation of resources. Hence, it is desirable to have a dedicated

*Corresponding author. Email: rameshkinim@gmail.com

ISSN 0020–7217 print/ISSN 1362–3060 online

� 2012 Taylor & Francis

http://dx.doi.org/10.1080/00207217.2012.713009

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

Comprehensive AGU (CAGU). This article deals with the design and Application-Specific
Integrated Circuit (ASIC) implementation of such a CAGU.

The three major goals that have driven the Digital Signal Processsor (DSP)
implementation are data parallelism, application-specific specialisation and functional
flexibility. These have led to a variety of hardware implementations (Tessier and Burleson
2000). Performance of a signal-processing system can be measured using parameters like
speed of execution or throughput, energy consumed in performing the task, flexibility in
terms of programmability or modifying the system to perform any other function and cost
of ownership.

Signal-processing kernels like Fast Fourier Transform (FFT), DCT, Finite Impulse
Response (FIR) filters are good examples for functions. A transform or an object primitive
can be thought of as a function with a state associated with it, for example an Infinite
Impulse Response (IIR) filter. If the transform like IIR filter operation is performed on a
block of data and this operation on each block of data is made independent of the other
block, i.e. the initial state required for the processing of each data block is generated within
itself or can be provided as a part of the input, then each of these transforms can be
considered as a function and the sequential or parallel invocation of these objects do not
effect each other. Compute models, selection of a suitable computing model, development
of implementation strategy, functions, transforms, various kinds of dataflow and system
architectures are described by DeHon (2008).

A lot of research has taken place to study the various aspects of reconfigurable devices,
like reconfigurability, synthesis, placement, routing strategies, configuration loading and
management. These concepts have matured to a great extent and in turn reconfigurable
devices have improved by incorporating this knowledge (DeHon 2008). Various
computing methods, their comparison, hardware implementation issues, types of coupling
in a reconfigurable system, software issues, partitioning between hardware and software,
context memories and reconfiguration issues have been dealt in Compton and Hauck
(2002).

Computational datapaths have regular structures. Coarse-grained architectures can
provide configurable algebraic operators with word lengths equal to data word. Such
structures are very area efficient (Hartenstein 2001). In coarse-grained reconfigurable
structures, the datapath is created using programmable interconnects between hardwired
datapath elements and operators.

The concept of Reconfigurable Processor (RP) comes from the idea of having a
General-Purpose Processor (GPP) the coupled with some reconfigurable resources that
allow the execution of custom application-specific instructions. Dynamically RP achieves
higher speed of computation with lower cost of silicon area for computation intensive
applications in domains like multimedia.

The mapping of an entire application on to a reconfigurable platform may result in the
sub-optimal use of reconfigurable resources as large amount of infrequently used code will
occupy the precious reconfigurable resource. Hence, mapping of only the most often used
kernels to a reconfigurable resource and executing the non-kernel code part of the
application on a GPP will be effective.

Section 2 deals with the design issues that highlights the need for a CAGU and
provides an overview of the setup in which the designed CAGU can be used. Section 3
describes the algorithms and hardware developed for AGUs supporting data/coefficient
fetch and result update. Details of integration of the individual AGUs into a CAGU is also
discussed. Section 4 gives the details of the ASIC implementation of the CAGU and the

2 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

Dynamically Reconfigurable Data-Path (DRDP). It also explains the testing procedure of
the fabricated CAGU chip. Section 5 discusses the timing details of the execution of the
three DSP kernels, namely FFT, convolution and Sum of Absolute Difference (SAD)
computation for Motion Estimation (ME).

2. Overview of the proposed dynamically RP

RPs find extensive applications in networking and multimedia domains. Multimedia
applications, like Audio/Video Encoders/Decoders, Transcoders, Fast Fourier Transform
(FFT) in Orthogonal Frequency Division Multiplexing (OFDM) used in Software-
Defined-Radios, can exploit the features of an RP to minimise the hardware requirements
and at the same time improve the throughput.

The proposed processor has an array of four dynamically Reconfigurable Functional
Units (RFU) sharing a common memory. The array of RFUs and the memory are
controlled by an Application-Specific Instruction set Processor (ASIP). The RFU array
with a control processor can also be mapped onto an FPGA-based embedded-system for
multimedia applications.

The overall operation of the proposed processor can be summarised as follows.
Upon receiving a service request for processing/executing a kernel operation, the ASIP

controller facilitates the storage of data to be processed in the appropriate memory block,
initialises a free RFU with appropriate control settings, schedules the kernel on that RFU.
Upon completion of the kernel operation, it frees the RFU. Basically, the ASIP
coordinates the job of kernel execution.

Perceived advantages of the architecture are:

(1) The innermost loop of a kernel can be executed in a one-clock cycle, and hence
executes faster than a GPP or a DSP processor.

(2) Since the kernel itself is implemented as a micro-program, there is no need for the
code (program) memory and hence no need for the instruction fetch and decode.
Therefore, there will be apparently savings in memory requirement and power.

(3) The application can be written in terms of function calls. These function calls can
be mapped to kernels executed on the RFU by the ASIP. The application program
tends to be compact.

The Dynamically Reconfigurable Data Path (DRDP) under discussion supports signed
integer and fixed point arithmetic. The output of any of these functional units can be
routed to at least one input of all the functional units. The DRDP unit will have three
input ports and an output port, other than two memory read ports and a memory write
port. The schematic representation of a DRDP is shown in Figure 1(a). The configuration
of a datapath is defined by a control word that is stored in a configuration memory.

The DRDPs can be cascaded by interconnecting the Input/Outputs (IO) appropriately
to form a complex datapath with kernel operations spread over multiple DRDPs in a
chained or pipelined fashion. The processor design is targeted at the acceleration of
execution of these often used kernels under the control of the ASIP. DRDP consists of an
optimal number of adders (adder/subtractor), multipliers, comparators, barrel-shifters for
normalisation/de-normalisation, register-files for temporary storage, as shown in Table 1.
The RFU contains a DRDP, 3 AGUs for the generation of memory addresses and a
configuration memory with multiple contexts, as shown in Figure 1(b).

International Journal of Electronics 3

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

Given a function (written using a subset of ‘C’ language) and a set of resource
constraints, ‘SPARK’ – a high-level synthesis tool (Gupta et al. 2004a,b) generates
control/data flow graphs of the function, Very-high-speed-integrated-circuit Hardware
Description Language (VHDL) code for the synthesis and equivalent ‘C’ code for the
verification purpose among others. The type and the number of functional units to be used
in the datapath have been optimised for the selected kernels. The goal of executing the
innermost loop of any of the selected kernel in the one-clock cycle with few finite
arithmetic units is satisfied if address update units are separated from datapath of the
kernel. This leads to the use of dedicated AGUs. This observation is also supported by
Lysecky, Stitt, and Vahid (2006) that, in the case of application implementation through
the high-level synthesis, the inclusion of AGU minimises the circuit complexity and helps
achieving higher speeds of execution.

HDL code in the structured style has been developed and tested for each of the address
update functions required by data/coefficient fetch and result-write for each kernel,

+/−

nn

n

+/−

nn

n

nn n

Data Ports
of Memory

nn

2n

nn

2n
* *

n

n

Register FilesBarrel Shifter

2n

2n

n

q

D
at

ap
at

h
St

at
us

p

C
on

fi
gu

ra
tio

n
D

at
ap

at
h

Data from
other DRDPs

n n n

Memory
Bank

Data
ASIP Controller

Configuration
Memory with

Multiple Contexts

Address
Generator

Unit 1 (AGU 1)

Address
Generator

Unit 2 (AGU 2)

Address
Generator

Unit 3 (AGU 3)

Data Path (DRDP)
Reconfigurable
Dynamically

Data
Ports

8

8

16
1616

51
6

6

6

18

AGU, DRDP initialization Bus

8

Interrupt

(a)

(b)

Figure 1. Block schematic diagram of reconfigurable functional unit with its components:
(a) proposed dynamically reconfigurable datapath unit (RDPU); (b) reconfigurable functional unit.

Table 1. Components used in the RFU.

Name of the component used Number of instances

Adder/subtractor 2
Multiplier 2
Barrel shifter 2
Comparator 1
Register files (each having 4 registers) 4
AGU 3

4 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

such that one address in the required sequence is generated in every clock cycle. Common
functional units used in the address generation process for these kernels were identified.
A CAGU was then developed, which can support various addressing modes with a shared
datapath elements and control structure.

Though coarse-grain reconfigurable architectures provide significant speedups, the
ability to compile from imperative high-level languages like ‘C’, Matlab� and Java� to
achieve noticeable speedup is not proved due to reasons like reduced focus on compilation
phase and mapping computational structures effectively on reconfigurable architectures
(Cardoso 2004). Mapping of the innermost loop to a DRDP coprocessor is discussed in
Huang and Malik (2002). The system described in this article can map a high-level DSP
kernel with recurring loops (like N-point FFT, FIR filter implementations) onto the
DRDP for execution. The CAGU supports address generation across multiple levels of
recursive loops for these kernels without changing the datapath.

Most of the RP architectures developed till now need a complex specialised compiler to
compile the application or high-level synthesis of the application to map the application on
to the respective processor. This research targets at increasing the speedup by designing a
coarse-grained architecture that aids in mapping the multimedia applications more
effectively to the proposed architecture. The multimedia applications can be written in any
imperative high-level language using two kinds of function calls. The first type is the basic
multimedia file header processing and system IO handling, which are processed by the
controller processor. The second type being the DSP kernels that can be mapped directly
to the RFUs and can be executed in an accelerated fashion. Thus eliminating the need for
resynthesis, special efforts required in writing the compiler and effective exploration of
design space to suit the reconfigurable hardware. The interaction between the controller–
processor and the RFUs are described elsewhere in this article.

The Montium Tile Processor has an AGU associated with each memory block in it
(Smit et al. 2007). This AGU can only generate memory access patterns like increment,
decrement and bit-reversed as available in typical DSP processors. For other complicated
functions it depends on the Look-Up-Table approach. It is important to note that
Montium Tile Processor’s AGU supports only one loop and between loops user code
intervention is needed. In short, the addressing modes do not support the address
generation for the execution of the entire kernel without any coded manipulation
in-between loops.

A set of dedicated, efficient AGUs will definitely enhance the performance. Next
section discusses the AGU in detail.

3. Comprehensive address generator for dynamically RPs for DSP kernels

In signal-processing applications, data access can be characterised as indexed access of
vectors stored in memory, where indices are referred to as pointers in higher level
languages. These indices are data dependent and the sequence of access depends on the
kernel operation being performed on the data. Stride can be defined as the distance
between the addresses of consecutively accessed vectors in the memory. The strides could
be linear or non-linear, and can be characterised by an algebraic equation. Thus, the
address of the next location to be accessed can be expressed as an algebraic expression in
terms of the current address and can be viewed as an addition of a modifier to the current
address. So, the address generation process can be seen as a sequence of algebraic

International Journal of Electronics 5

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

operations performed on the current address. This algebraic expression can be synthesised
into an AGU using arithmetic operators and a controller.

Extracting the Address Expression (AE), applying high-level optimising methods like
AE splitting/clustering, induction variable analysis, target architecture selection and
global-scope algebraic optimisation are explored in Miranda, Catthoor, Janssen, and De
Man (1998). It also aims at the reduction of cost of time-multiplexed address unit at the
system level. This approach is more suited for the high-level synthesis of typical
multimedia applications.

In the case of a signal-processing ASIC, AGU caters to the generation of a pre-
determined type of the sequence of addresses. In the case of GPP, the AGU may support a
few simple sequence types or addressing modes. A Programmable Digital Signal Processor
(PDSP) will have dedicated AGUs that support few additional addressing modes like
bit-reversed and circular. Also, AGUs do not use the datapath resources leading to the
concurrency of address generation and datapath operations. If any other sequence is
required, then it needs to be generated by the execution of processor code and the use of
datapath computational units, resulting in a non-optimal use of resources like datapath
elements and time. Signal-processing applications require varied types of addressing
modes. For a given application, each type of data access may need a different type of
addressing mode and this depends on the architecture of the processing system, datapath,
type of memory used and the way data are stored in the memory. For example,
FFT computation needs the data to be fetched in a bit-reversed order and the coefficients
in a linear fashion, as well as the result to be written back in a bit-reversed order. FIR filter
implementation of stored data requires the data to be fetched in a linear fashion, but the
same filter-processing streaming data needs to fetch the data from a circular buffer and
needs circular addressing mode.

Most of the signal-processing applications can be written in terms of DSP kernels and
the kernels themselves could be function calls. To achieve speedy execution, the execution
of kernels may be offloaded to a hardware with a fixed or reconfigurable datapath under
the control of a supervisor processor. The job of the supervisor processor is to schedule the
kernels on the hardware, initialise the hardware with data pointers and other kernel
control variables. The interaction between the hardware and the controller could be
through interrupts, DMA and the setting of control words. Such a hardware could be a
coprocessor or a reconfigurable datapath hardware capable of executing various kernels,
having the ability to switch between specified kernel operations by reconfiguring its
datapath with a simple switching of microprogram memory banks. This hardware
accelerator unit may be capable of accessing the data from a virtual memory for processing
and result-storing purposes. The datapath may be pipelined and the memory being
accessed could be multiported. High throughput demands high memory bandwidth and
puts very high constraints on timing budget for address generation. Hence, it is desirable
to have multiple reconfigurable AGUs capable of concurrent generation of various special
address sequences required by a variety of DSP kernels, with each of the reconfigurable
datapath. For example, one AGU for each data fetch, coefficient fetch and result write
operations. The reconfigurable AGU may have its own local microprogram or a finite
state machine for generating sequences of addresses and may function under the
supervisory control of a microprogram for that kernel.

Some of the most often used addressing sequences are Sequential, Sequential with
offset, Shuffled, Bit-reversed, Reflected. Hulina, Coraor, Kurian, and John (1995) discusses
the implementation of a coprocessor for the generation of these address sequences and

6 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

provides the host processor with a few additional special addressing modes defined by
signal-processing algorithms, without any change in the host processor’s instruction set
architecture or the external memory.

Efficient generation of address sequences like zig-zag for DCT, sequence of addresses
to fetch the twiddle-factors in FFT operation and sequence of addresses to fetch the data
in convolution operation are essential for multimedia processing. Address sequence
generation for kernel operations on both stored data and streaming data are also
necessary.

This article describes an address generation unit suitable for a DRDP processor,
capable of generating one address per clock cycle in a required sequence and can be
synchronised with the datapath operations using the Address Generate Enable signal. The
following address sequences suitable for multimedia applications are supported:

. Bit-Reversed – for data fetch and data store in the case of a complete N-point
FFT kernel.

. Fetching twiddle-factors for a complete N-point FFT kernel.

. Data fetch operation for a convolution kernel (stored data – any values
of N and M).

. Data fetch operation for a convolution kernel (streaming data – any values of N
and M).

. Impulse response coefficient fetch operation for a convolution kernel
(stored/streaming data) – Modulo M (circular) addressing mode.

. Result store operation for a convolution kernel (stored/streaming data) – Divide
by N addressing mode.

. Data fetch operation for a linear-phase FIR filter (streaming data).

. Data fetch operation from macro-blocks for ME kernel.

. Zig-zag – suitable for fetching data for entropy coding.

. Other modes like increment and decrement.

Hardware for each of these addressing modes was developed separately and later a
CAGU that can generate all the address sequences listed above was designed. The AGU
developed is tailored to work with a DRDP, though the concept can be used with any
datapath unit with appropriate synchronisation. As an example of application of this
CAGU, consider an array of RP datapaths that support the execution of Single Kernel
Multiple Data (SKMD), implying concurrent fetch of data from multiple databanks/data-
streams for executing the same kernel operation on these data. A set of CAGUs
pertaining to data access for a specific kernel can be configured by selecting suitable
addressing modes and may be used to generate address sequences required by multiple
datapaths.

AGU and DRDP are designed as a parameterisable word length and a address size
using a hardware description language in fully structured style of coding. Thus the
hardware synthesised will be identical to the description in the code. AGU and the DRDP
provide the necessary status signals back to the controller and are controllable by a micro-
programmed controller. Hence, reconfigurability is guaranteed with just a change of the
micro-program.

Our earlier paper (Kini and Sumam 2009) reports AGUs developed for data access,
twiddle-factor fetch suitable for a complete N-point FFT kernel and implementation of
N-point FFT kernel using Dynamically Reconfigurable Data Path (DRDP). Design and
implementation of AGUs for data and coefficient fetch for a complete convolution kernel

International Journal of Electronics 7

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

and AGU for accessing data from N�N pixel array in a zig-zag order used in entropy
coding after DCT are reported in Kini and Sumam (2009).

3.1. Address generation for N-point FFT kernel

FFT kernel can be executed using a single DRDP in a folded manner or can be executed
using four DRDPs in a chained manner. A typical datapath that implements a single
Butterfly operation in Decimation-In-Frequency (DIF) is given in Kini and Sumam (2009)
and on the same lines datapath for a Decimation-In-Time (DIT) scheme is also
implemented.

In each of these datapaths four DRDP units have been cascaded and configured to
form a single datapath capable of performing one butterfly operation for every two clock
cycles. So, an N-point FFT operation is completed in (Nlog2(N)þ 4) clock cycles, where a
constant of four clock cycles corresponds to initialisation of the DRDP and write back
latency of the last butterfly result. The setup assumes that the twiddle-factors are
precomputed and saved in memory.

3.1.1. Bit-reversed address generation for N-point FFT

Many algorithms to compute bit-reversed address are available in the literature. Many of
them are best suited for coding using high-level languages on microprocessor or DSP
(Evans 1989; Rodriguez 1989; Walker 1990; Yong 1991). These algorithms can be
classified as those based on heuristics (Yong 1991) and algorithms using Seed-Table
(Walker 1990). Address generation using these methods have a long delay as compared to
the datapath latency and the memory access delay.

Hardware AGUs have been developed for array processors (Nwachukwu 1985).
Nwachukwu (1985) and Hulina (1995) implement the bit-reversed address generation
using counter-multiplexer method. The counter-multiplexer method can generate a variety
of patterns but as the number of addresses increases, the area increases exponentially, also
resulting in the increase in power dissipation and leakage.

The method proposed in our paper (Kini and Sumam 2009) can generate a sequence of
addresses suitable for many multimedia algorithms and uses adders, shifters, counters in
the datapath and very few gates for the simple control logic. This translates to a linear
increase in transistor count with the increase in the number of address bits unlike the
counter-multiplexer method. Banerjee, Dhar, and Banerjee (2001) describe an algorithm
for address generation for data access for an N-point FFT. The hardware developed for
implementing the algorithm uses three loadable down counters and allied control circuit.
Hardware developed by us for the same functionality needs only two shift registers and
allied control circuit, as depicted in the Figure 2(a). The shifters hold data patterns like
‘11..1100..00’ and ‘00..00100..00’, and are shifted once after the completion of each stage of
FFT. Only two bits toggle in each of the shifters as compared to multiple bits toggling in
each of the counters after every address generation as in Banerjee et al. (2001).

The input or the output samples need to be re-ordered in a bit-reverse fashion a
depending on whether DIT or DIF approach is employed. This reordering is done by
exchanging data in memory locations pointed by pairs of addresses generated by
bit-reversed address generator for the first stage. For the actual exchange, the data
elements of the pair are fetched from memory, stored in registers of the DRDP and written

8 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

back in exchanged order from registers. For fetching the data and writing it back, we use
two AGUs appropriately synchronised.

Discussion on reducing the number of memory accesses for mapping the data array in
the bit-reversed order, avoiding self-reversed binary address patterns is given in Harley and
Maheshwaramurthy (2004). This concept is useful in reducing the memory accesses
required during pre- or post-processing of data in terms of reordering the data samples
while computing FFT using DIT or DIF schemes. This is realised by comparing the
bit-reversed address generated by AGU with an internal linear up counter. If the counters
match, exchange is not required. Hence, no memory read or write operations are
performed and the AGU will continue to generate the next address in the sequence.

3.1.2. Address generation for accessing twiddle-factors for N-point FFT

For an FFT butterfly operation, a pair of data operands are needed – one with a
bit-reverse order address and the other is a twiddle-factor. An algorithm for generating the
sequence of addresses for fetching twiddle-factors for any N-point FFT with log2N stages
has been developed. The respective hardware has been designed, simulated, tested and the
block schematic diagram is shown in Figure 2(b).

3.2. Address generators for convolution kernel

Convolution approach is used in implementing digital filters like FIR filter. When an input
sequence of length N is convolved with an impulse response of length M, the output
sequence is of length NþM� 1. The address generation scheme assumes that the given
data is padded with M� 1 zeroes at both ends. The sample points of impulse response are
stored in a reverse order in the memory.

SRA

Mask

SRL

N/2

Correction
Generate Logic

Bf_Br_Add_Sub

Offset_Addr_Reg

Offset

Control Logic
Shift

SRL: Shift Right Logical
SRA : Shift Right Arithmetic

Correction

Correction, counter load and
shift control Generation Logic

N/4

(up counter)
NN Counter

"00...01"

(up counter)
N/2 Counter

"00...01"

NN

SRL

N/2

Bf_Br_Add_Sub

Offset_Addr_Reg

Offset

Correction

(b)(a)

Figure 2. Hardware Schematic of AGUs used by FFT kernel: (a) Hardware schematic
representation of bit-reversed address generator; (b) Hardware schematic representation of FFT
twiddle-factor address generator.

International Journal of Electronics 9

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

The sequence of addresses for fetching coefficients follows a Modulo M pattern
and that for writing the convolution result Divide by M. The convolution kernel with N
data points and M impulse response points is executed in ((NþM� 1)�Nþ 3) clock
cycles, where three clock cycles correspond to the initialisation and write latency of the last
result.

3.2.1. Address generator for fetching data for convolution – stored data and
streaming data

The convolution operation may be performed on stored data or streaming data. Each of
these operations need a different type of AGU. The AGU suitable for both applications
have been developed. The algorithm for fetching the coefficients will remain the same
whether the kernel is working on stored or streaming data. The AGU used for storing the
convolved data will use linear or circular addressing mode depending on whether the
kernel is working on the stored or streaming input.

The hardware schematic diagram of the AGU for data fetch in the case of stored data
is shown in Figure 3(a). In the case of streaming data, the data samples are stored in a
circular buffer. Schematic representation of the AGU hardware is as shown in Figure 4(a)
and the algorithm for generating the address for fetching streaming data can be
summarised as shown in Figure 4(b).

3.2.2. Address generator for accessing filter coefficients in convolution

The algorithm for generating the addresses for fetching coefficients is of Modulo N type
and is similar to that of data fetch for convolution (stored data). Whenever the counter
reaches a value of N� 1, the correction is �(N� 1), as shown in Figure 3(b).

Reset

Offset_Addr_Reg
CLK Reset

Ld

CLK

Addr_Gen_En

1
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub

1

Reset

CLK

00..00

Up Ld

Reset
Counter

0

1

1

M−2

Comparator

M−1

Correction
0

’N−1’’1’

1

’1’
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub

’1’

Reset

CLK

"00..00"

Up Ld

Reset
N_counter

Reset

Offset_Addr_Reg
CLK Reset

Ld

CLK

Addr_Gen_En

Comparator
Eq

’N−1’

(b) (c)(a)

Reset

Offset_Addr_Reg
CLK Reset

Ld

CLK

Addr_Gen_En

’1’

Reset

CLK

"00..00"

Up Ld

Reset
N_counter

’1’
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub
’0’

0 1

"0" "1"

Comparator
Eq

’N−1’

Figure 3. Hardware schematic representation of AGU used by convolution kernel: (a) Data fetch –
stored data, (b) coefficient fetch, (c) storage of result.

10 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

3.2.3. Address generator for accessing convolved data writeback

The algorithm for generating the addresses for result storage is of Divide by ‘N’ type and is
similar to that of coefficient fetch for convolution. When the counter value is less than
N� 1, the correction is 0 and when the counter is equal to N� 1, the correction is 1 as
shown in Figure 3(c).

3.3. Address generator for accessing data for a linear-phase FIR kernel

Consider a case of linear-phase FIR filter with even number of coefficients h(n) that are
symmetric. For example, let N¼ 6, then:

hð0Þ ¼ hð5Þ, hð1Þ ¼ hð4Þ and hð2Þ ¼ hð3Þ

Hence, y(n) can be written as

yðnÞ ¼ ½xðnÞ þ xðn� 5Þ�hð0Þ þ ½xðn� 1Þ þ xðn� 4Þ�hð1Þ þ ½xðn� 2Þ þ xðn� 3Þ�hð2Þ

A novel algorithm for generating the appropriate sequence of addresses to fetch the
data has been developed. The corresponding hardware has been implemented and tested.
The schematic representation of the hardware is shown in Figure 5(a) and the
corresponding algorithm can be summarised as shown in Figure 5(b).

3.4. Address generators for ME using block-matching technique kernel

In the case of video there will be little movement of objects (including the background)
between adjacent frames. An object in the previous frame tends to get displaced/rotated in

ResetReset

+

Subtractor

1N

Correction

0 1

1
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub
1

Reset

Offset_Addr_Reg
CLK Reset

Ld

&

00..00 00..00
1

Up

Comparator

Counter1
Ld

CLK CLK
Up

Counter2

Comparator

ResetReset

Ld

N

N

Comparator
A B

A >= B

N − 1

0 N

CLK

Addr_Gen_En
Offset

(a)

Reset: Reset Counter1, Counter2,
Offset_Register;

Begin: If Counter1==N−1
Then Counter1=0,

Counter2=Counter2+1;
Else Counter1=Counter1+1;
If Counter2==N
Then Counter2=0;
If (Counter1+Counter2) < N
Then Correction=0;
Else Correction=N;
Offset=(Counter1+Counter2)−Correction;
Goto Begin;

(b)

Figure 4. (a) Hardware schematic representation and (b) algorithm for data fetch AGU for
convolution kernel – streaming data.

International Journal of Electronics 11

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

the next frame by a small amount. Practically there may not be much of a difference

between the frames. Frames may contain multiple slices and the slices can be divided into

smaller blocks called Macro-Blocks (MB). If a macro-block in the given slice in the current

frame is compared with the corresponding macro-block or in the neighbourhood of the

corresponding macro-block in the prior frame, the difference will normally be very small.

The search area for macro-block match is restricted to the search-parameter p pixels

around the macro-block in a slice in the previous frame. Searching for such a block for

which the cost function is the least and within a prescribed limit and computing the

displacement of the block from the previous to the current frame is the goal of ME.

This operation needs to be done for all blocks in the frame and is a computationally

expensive operation. Motion detection over longer distance needs larger value of the

search-parameter and results in an exponential increase of computational complexity.

Popular cost functions are Sum of Absolute Difference (SAD), Mean Absolute Difference

(MAD) and Mean Square Error (MSE). The MSE as a cost function is computationally

more intensive compared to MAD. The datapath for computing SAD is shown

in Figure 6(a).
The SAD computation kernel for an N�M-sized macro-block is executed in

(N�Mþ 2) clock cycles, where the additional two clock cycles correspond to the

initialisation and write latency of the last result.

3.4.1. Address generator for fetching data for ME using block-matching technique

The AGU assumes that the data of the current and the reference slices are kept in the

memory as rows. The width and the height of the macro-block (mb_wd, mb_ht) and the

width of slice (sl_wd) are given. The AGU uses two up-counters to maintain the row and

Reset: Reset Counter,
Offset Address Register;

Begin: If Counter==N−1
Then Counter=0;
Else Counter=Counter+1;
s=(N−1)−Counter;
If Counter0

Then t=(Current_Offset−s) modulo N;
Else t=(Current_Offset+s);
If Current_Offset >= N/2
Then u=Current_Offset−(N/2−1);
Else u=Current_Offset+(N/2+1);
If Counter==N−1
Then v=u;
Else v=t;
Next_Offset=(v) modulo N;
Goto Begin;

(b)(a)

Figure 5. (a) Hardware schematic representation and (b) algorithm for data fetch AGU for
linear-phase FIR filter kernel AGU – streaming data.

12 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

column counts. The block schematic representation of the hardware implementation is
shown in Figure 6(b).

3.5. Zig-zag address generation for accessing N�N pixel array

JPEG uses entropy coding for compressing the data after performing DCT and
quantisation. After computing the 2D – DCT of an N�N image, it can be seen that
the significant coefficients are present in the top-left corner of the 2D matrix.
For compressing the coefficients further, it is necessary to process only these coefficients.

Entropy coding requires the quantised data of N�N pixel array to be read in zig-zag
fashion as shown by the sequence of arrows in Figure 7(a). An algorithm has been
developed to generate this address sequence for any value of N�N (N being even).
The hardware has been developed, simulated, tested and the block schematic is shown in
Figure 7(b). Cond1 to Cond7 check if the counter value pair has reached the boundary of
the pixel array map, and hence a change of direction in scanning is required.

The algorithms have been implemented in VHDL in a fully structured coding style.
The data width and the address width are parameterisable. The coding completely adheres
to structural style and the algorithm is using components that scale linearly in terms of the
complexity of the number of transistors in the hardware. All the algorithms have been
simulated and tested. Structured approach of the coding helps in identifying common
components used across various addressing modes, like counters, shifters, adder

A + B
A B

0 1 01

A B
A < B

A B
A − B

Accumulator

C ij R ij

"0..0"

clr_acc

(a) (b)

ResetReset

−
sl_wd mb_wd &

Done

Reset

Offset_Addr_Reg
CLK Reset

Ld

&
CLK

Addr_Gen_En

1
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub
0

1
Up

Comparator

mb_wd

X_Counter

Correction

0

1

1

Ld
CLK

00..00

CLK
Up

Y_Counter

Comparator

mb_ht

ResetReset

Ld

00..00
0

Figure 6. ME using block-matching technique: (a) data-path for SAD computation; (b) hardware
schematic representation of AGU for data fetch.

International Journal of Electronics 13

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

and comparators. A CAGU that can support 11 addressing modes listed earlier has been
designed using up/down counters cum shifters, accumulator, comparators and little glue
logic.

4. ASIC implementation

The CAGU and the DRDP have been implemented as ASICs. Standard cell library from
Faraday based on UMC 0.18mm with six metal layers process was used for implemen-
tation. The synthesis of CAGU and DRDP were done with the following constraints:

set_clock_uncertainty 1.0 ns
set_output_delay -max 1.0 ns
set_input_delay -max 1.0 ns
Synthesis effort/optimisation : Medium

4.1. ASIC Implementation of the CAGU

Since most of the kernels datapath would involve at least one MAC unit whose datapath
delay is going to be considerable, the timing of the CAGU need not be very aggressive and
a clock of 10 ns period was assumed. Keeping this in mind, ripple-carry adders were used
in the CAGU. They are slower but occupy less space.

The CAGU was synthesised, placed and routed. The post-synthesis report is
summarised in Table 2. The snapshot of the layout is shown in Figure 8(a). It was
observed that if the clock period for a given address width is increased from the specified
value in Table 2, the positive slack of the design would increase. The number of cells used,

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Adder / Subtractor
Add_bar_Sub

Offset

Offset_Addr_Reg

cond1 cond2

Correction
Generate LogicN

Control Logic

co
nd

4

co
nd

6

co
nd

7

Up

nwoDnwoD

Up
retnuoCwoRretnuoCnmuloC

co
nd

5

co
nd

3 Correction

(a) (b)

Figure 7. (a) Sequence of addresses and (b) hardware schematic representation of AGU for zig-zag
addressing mode.

14 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

area occupied and power would reduce indicating that at lower clock frequencies we can
have a much compact CAGU that consumes less power. The functional verification was
carried out on the extracted netlist and the CAGU is functioning as desired.

The CAGU chip was fabricated at IMEC Belgium through Europractice. The CAGU
is one of the three designs co-located on a multi-design chip (QFN48 package). There were
two other designs (one digital and the other mixed signal) that shared the silicon and the
pins of the chip. The total die size was 1.5mm� 1.5mm and the chip had 48 pins. There
were constraints on the number of pins available for each design. The two digital designs
shared some of the pins between them and the data-pins were de-multiplexed at the inputs
and multiplexed at the outputs.

A common PCB with the required power supply was designed for testing purposes and
the pins were brought out on connectors. Xilinx Virtex-5 FPGA kit was used to generate
the control signals required by the CAGU (which otherwise would have been generated by
the RFU under the control of the embedded controller processor). The output of the
CAGU were observed on a Mixed Signal Oscilloscope as well as routed to the host
computer. The fabricated chip was tested and the results are promising.

4.2. ASIC implementation of the DRDP

A DRDP suitable for an effective execution of a set of selected DSP kernels has been
developed. The DRDP consists of two 16-bit adder/subtractors, two 8� 8 multiplier units,

Figure 8. Snapshots of the layouts: (a) 8 bit wide CAGU; (b) 8 bit wide DRDP.

Table 2. Synthesis report of the CAGU for various address widths.

Criteria/address width (clk period) 8 bit (6ns) 16 bit (8ns) 24 bit (10ns)

Cells used 1016 1975 2948
Area in mm2 21,802 43,019 64,202
Leakage power in nW 39.46 77.84 117.46
Dynamic power in mW 2.95 5.43 8.65
Slack in ps 25 296 238

International Journal of Electronics 15

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

one accumulator register, one 16� 16 barrel shifter, one magnitude comparator and four

register files each with four registers. The synthesis was performed with a clock period

constraint of 24 ns. The post-synthesis observations are tabulated in Table 3. Back-end
design of the DRDP has been done and Figure 8(b) shows the layout of the DRDP. The

post-layout extracted netlist has been verified and simulated.
The implementation process was carried out using Cadence Tool Suite. Functional

simulation and post-extraction behavioural simulation were carried out with the

ModelSim tool.

5. Results and conclusion

Efficient address generation algorithms and hardware suitable for speeding up the

execution of DSP kernels using DRDPs have been developed, implemented and tested.

Timing details of the various kernel execution simulations is shown in Table 4. These

results prove the efficacy of the AGUs developed, the ability to synchronise the data access
and computation of result using the DRDPs as in the case of an 8-point DIF FFT kernel,

convolution kernel and SAD computation in ME kernel.

5.1. Conclusion

The concept proposed demonstrates the utility of dedicated AGUs and proves the

following:

. Computation of one address per clock cycle per AGU.

. CAGU can be configured to generate address sequence over the entire DSP kernel

without any intervention of any kind during the execution of the kernel.

Table 3. Synthesis report of the DRDP.

Parameter Clock period ¼ 24 ns

Cells used 2379
Area in mm2 61,937
Leakage power in nW 103.60
Dynamic power in mW 14.65
Slack in ns 1.7

Table 4. Timing details of various Kernel execution.

Kernel
Number of

clocks
Overhead (Initialisation

and latency)

FFT N-point Nlog2N 4
Convolution: (i) Stored data (NþM� 1)M 3

(ii) Streaming data (NþM� 1)M 3
ME: SAD Computation N�M macro-block N�M 2

16 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

. With the help of these AGUs and suitable reconfigurable datapath the innermost
loop of most of the chosen DSP kernels can be executed in one clock period.
A FFT butterfly operation is completed in two clock cycles.

Acknowledgements

The development, fabrication and testing of the chip was supported by the Ministry of
Communication and Information Technology, Government of India, under Special Man-power
Development Program in VLSI (SMDP – Phase II).

References

Banerjee, A., Dhar, A.S., and Banerjee, S. (2001), ‘FPGA Realization of a CORDIC-based FFT

Processor for Biomedical Signal-processing’, Microprocessors and Microsystems, 25, 131–142.
Cardoso, J.M.P. (2004), ‘Self-loop Pipelining and Reconfigurable Dataflow Arrays’, in International

Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS IV), Samos: Springer

Verlag, pp. 234–243.

Compton, K., and Hauck, S. (2002), ‘Reconfigurable Computing: A Survey of Systems and

Software’, ACM Computing Surveys, 34, 171–210.
DeHon, A. (2008), ‘Compute Models and System Architectures’, in Reconfigurable Computing – The

Theory and Practice of FPGA-based Computation, eds. S. Hauck, and A. DeHon, Burlington,

MA 01803-4255: Morgan Kauffmann, Chap. 5, pp. 91–127.

Evans, D. (1989), ‘A Second Improved Digit-reversal Permutation Algorithm for Fast Transforms’,

IEEE Transactions on Acoustics, Speech and Signal Processing, 37, 1288–1291.
Gupta, S., Gupta, R.K., Dutt, N.D., and Nicolau, A. (2004a), ‘Coordinated Parallelizing Compiler

Optimizations and High-level Synthesis’, ACM Transaction on Design Automomatic Electronic

Systems, 9, 441–470.
Gupta, S., Gupta, R.K., Dutt, N.D., and Nicolau, A. (2004b), SPARK – A Parallelizing Approach to

The High-level Synthesis of Digital Circuits, Boston: Kluwer Academic Publishers.
Harley, T., and Maheshwaramurthy, G. (2004), ‘Address Generators for Mapping Arrays in Bit-

reversed Order’, IEEE Transactions on Signal Processing, 52, 1693–1703.
Hartenstein, R. (2001), ‘Coarse Grain Reconfigurable Architecture (embedded tutorial)’, in ASP-

DAC’01: Proceedings of the 2001 Asia and South Pacific Design Automation Conference,

Yokohama, Japan, New York, ACM, pp. 564–570.
Huang, Z., and Malik, S. (2002), ‘Exploiting Operation Level Parallelism Through Dynamically

Reconfigurable Datapaths’, in DAC’02: Proceedings of the 39th Annual Design Automation

Conference, New Orleans, Louisiana, USA, New York, ACM, pp. 337–342.
Hulina, P., Coraor, L., Kurian, L., and John, E. (1995), ‘Design and VLSI Implementation of an

Address Generation Coprocessor’, IEE Proceedings – Computers and Digital Techniques, 142,

145–151.
Kini, R.M., and Sumam, D.S. (2009), Comprehensive Address Generator for Digital Signal

Processing, Fourth International Conference on Indusrial and Information Systems, ICIIS 2009,

28–31 Dec, pp. 325–330.

Lysecky, R., Stitt, G., and Vahid, F. (2006), ‘Warp Processors’, ACM Transactions on Design

Automation of Electronic Systems, 11, 659–681.
Miranda, M.A., Catthoor, F.V.M., Janssen, M., and De Man, H.J. (1998), ‘Highlevel Address

Optimization and Synthesis Techniques for Data-transfer-intensive Applications’, IEEE

Transactions on Very Large Scale Integration Systems, 6, 677–686.
Nwachukwu, E. (1985), ‘Address Generation in an Array Processor’, IEEE Transactions on

Computers, C-34, 170–173.

International Journal of Electronics 17

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

Rodriguez, J. (1989), ‘An Improved FFT Digit-reversal Algorithm’, IEEE Transactions on Acoustics,
Speech and Signal Processing, 37, 1298–1300.

Smit, G.J.M., Kokkeler, A.B.J., Wolkotte, P.T., Hölzenspies, P.K.F., van de Burgwal, M.D., and
Heysters, P.M. (2007), ‘The Chameleon Architecture for Streaming DSP Applications’,

EURASIP Journal of Embedded Systems, 2007, 11–20.
Tessier, R., and Burleson, W. (2000), ‘Reconfigurable Computing for Digital Signal Processing: A

Survey’, Journal of VLSI Signal Processing, 28, 7–27.

Walker, J. (1990), ‘A New Bit Reversal Algorithm’, IEEE Transactions on Acoustics, Speech and
Signal Processing, 38, 1472–1473.

Yong, A. (1991), ‘A Better FFT Bit-reversal Algorithm Without Tables’, IEEE Transactions on

Signal Processing, 39, 2365–2367.

18 R.M. Kini and S.S. David

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l I
ns

tit
ut

e
of

 T
ec

h
-

Su
ra

th
ka

l]
 a

t 0
8:

32
 1

8
D

ec
em

be
r

20
12

